
Norma Jaxel
W/NMC
Room 101

: ISWWBO
U.S. DEPARTMENT OF COMMERCENATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
NATIONAL WEATHER SERVICE

NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 347

SUGGESTIONS FOR WRITING ANSI-STANDARD FORTRAN
ON THE

CYBER 205

.. .~~
..~~~~~~~~~~~~~~~~~~~~~~~~~.

., -.

James J. Tuccillo
Automation Division

January 9, 1989

This is an unreviewed manuscript, primarilyintended for informal exchange of informatioamong NMC staff members. DA1 ECEIVED

JAN 12 1989

OFFICE OF DIRECTOUR

SUGGESTIONS FOR WRITING ANSI-STANDARD FORTRAN
ON THE
CYBER 205

J. Tuccillo
Dec 1988

I. INTRODUCTION

With the maturation of the CDC FORTRAN compiler and theavailability of the VAST-2 FORTRAN preprocessor, it is nowpossible to write ANSI-standard FORTRAN for the CYBER 205that is as efficient as hand vectorized code. The compilerwill automatically vectorize many constructs which wecurrently write in semicolon or vector function form.Certain constructs which are not vectorized by the CDCcompiler will be converted to vectorized code by the VAST-2preprocessor. VAST-2 is a FORTRAN-in/FORTRAN-out
codepreprocessor used prior to compilation. For the"advantagesof readability, portability, and maintainability, itbehooves us to write new code for the CYBER in the ANSIstandard and use the automatic vectorizer and VAST-2preprocessor to achieve vectorization. This assumes, ofcourse, that the data structures and algorithms of theprogram have been designed for vectorization. This documentwill address the topic of writing ANSI-standard code asopposed to using CDC non-ANSI extensions.

There may always be situations where hand vectorization isnecessary. These situations will, in general, represent a-small percentage of the code. The non-ANSI standard code canusually be confined to-small, easily identified subroutinesand functions so that the vast majority of the code is inthe ANSI standard. This is a widely accepted practice insoftware engineering.

The intended audience for this paper is CYBER 205 users,therefore, a general familiarity with the 205 is assumed.

II. EXAMPLES

In this section several code segments which are common tomany NMC codes will be presented. The CDC compilertransparently vectorizes many of these constructs. The VAST-2 preprocessor is needed on others. VAST-2 generates FORTRANwith CDC extensions from FORTRAN. The processed FORTRAN willhave semicolon notation and CDC FORTRAN vector functions andwill look similar to the hand vectorization present in mostNMC codes. Depending on your code, VAST-2 may or may not be t*needed. If it is used prior to compilation it performs thevectorization analysis which the CDC compiler would normallyperform.

II.1 SIMPLE DO LOOPS

The most common construct in our CYBER codes, which we havetraditionally hand vectorized, is the simple DO LOOP shownbelow. In this case simple means a loop with no conditionaltesting.

DO 1 I = 1, LEN
A(I) = A(I) + B(I)

1 CONTINUE

This is usually hand vectorized as follows:

A (1; LEN) = A (1; LEN) + B (1; LEN)
The hand vectorization is not needed. The DO LOOP will beautomatically vectorized by the compiler if the automaticvectorization compiler option is used. If the value of LENis not known at compile time then the UNSAFE vectorizationoption must be included. Automatic strip-mining of the loopwill be performed if the vector length is greater than65535. Strip-mining is the process by which a loop isprocessed, transparently to the programmer, in several stepsso as not to exceed the loop iterate limit of 65535 on theCYBER.

VAST-2 will convert the DO LOOP to semicolon form with codeto perform strip-mining if LEN is greater than 65535 or ifLEN is not known at compile time.

In the hand vectorized code, the value of LEN must be lessthan 65536. If the compiler does not 'know the value of LENat compile time it assumes you have taken the proper stepsto insure that it is less than 65536. If it is not then theresults may be incorrect because the actual vector lengthwill be modulo 65535. If the compiler knows the value of LENand it is greater than 65535 it will issue a compiler error.It will not stripmine code written in semicolon form.
Clearly it is safer and more general to let either theautomatic vectorizer or the VAST-2 preprocessor performvectorization of simple loops. The loops can, of course, bemore complex as long as the basic requirements ofvectorization are met. (see the CDC FORTRAN manual forprecise requirements for vectorization).

II.2 INDIRECT ADDRESSING

Indirect addressing is also automatically vectorized by theCDC compiler. An example is shown below.

DO 1 I = 1, LEN
A (I) = B (INDEX (I))1 CONTINUE

where INDEX is an integer array which has been previouslyassigned. We normally use the GATHER instruction on theCYBER as follows:

A (1; LEN) = Q8VGATHR (B (1; LEN),
INDEX (1; LEN);
A (1; LEN))

Indirect addressing on the left hand side, shown below, isalso automatically vectorized.

DO 1I = 1, LEN
A (INDEX (I)) = B (I)1 CONTINUE

The use of the SCATTER instruction is the normal procedurefor hand vectorization as shown below.

A (1; LEN)=Q8VSCATR (B (1; LEN),
INDEX (1; LEN);
A (1; LEN))

VAST-2 will convert the DO LOOPs to GATHERs and SCATTERswith strip-mining, if necessary.

II.3 VECTORIZED IF-THEN-ELSE

The CDC FORTRAN compiler will not, at this time, vectorizeIF-THEN-ELSE constructs, however, the VAST-2 preprocessorwill. An example is given below.

DO 1 I = 1, LEN
IF (A (I) .LT. 10.0) THEN

A (I) = 10.0
ELSE

A (I) A () *a (I)
END IF

1 CONTINUE

The normal hand-vectorized code would be as follows:

WHERE (A (1; LEN) .LT. 10.0)
A (1; LEN) = 10.0

OTHERWISE
A (1; LEN) = A (1; LEN) * A (1; LEN)END WHERE

VAST-2 will convert the IF-THEN-ELSE structure directly tothe WHERE-OTHERWISE structure.

II.4 COMPRESSION AND DECOMPRESSION
* Often a series of calculations need to be done on a subset

of an array. There are two procedures for handling this. The
first procedure, represented by II.3, is to perform the
calculations on the entire array and store the resultsaccording to a conditional test. This is the so-called WHERE
block or bit-vector controlled store. The second procedureis to compress out the subset of points into a smallercontiguous array, perform the needed calculations, and thendecompress the data back into the desired array. The first
procedure is generally preferred when most of the array
requires the calculations or the number of calculationsrequired on the subset of the array is small and the
overhead of compression/decompression

is greater than the
computational work on the subset. The second procedure is
preferred when many calculations are to be performed on a
small percentage of the array. Compression/decompressionwill be automatically vectorized by VAST-2. The\intermediatearrays will be allocated from dynamic space and will be
transparent to the programmer. The only requirements are the
inclusion of a VAST-2 directive (they begin with 'C#')
before and after the loop and use of the SC compiler option.An example follows.

C
C#ASSERT USE(CMPRS XPND)
C

DO 1 I = 1, LEN
IF (A (I) .GT. O.0o) THEN

C computational work .

1 CONTINUE
C#ASSERT USE(CONTROL BITS)

II.5 32 - BIT CONSTANTS

The CDC compiler requires that 32-bit constants be
identified as such using the following form:

nSx

where n is a string of digits
and x is a signed integer.

This is analogous to the 'E' notation normally used forscientific notation. An example is as follows:

R = 2.8704 S + 2

If this form is not followed then the arithmetic may be 64-bit which would defeat one of the two reasons for using 32-bit; an increase in execution speed. The above form is notANSI standard. The declaration of the variable R would be asfollows:

HALF PRECISION R

or the more general form for an entire program
section

IMPLICIT HALF PRECISION (A-H, O-Z).
Neither of these statements is ANSI-STANDARD and there is nomechanism for having a 32-bit code without including them.The 'S' notation for"specifying the value of a constant canbe avoided, however, by setting'the value with a PARAMETERstatement. The PARAMETER statement is ANSI-standard. Anyvalue in a PARAMETER statement will be typed by itsdeclaration and all occurrences of the non-ANSI standard 'S'notation can be avoided. An example follows:

IMPLICIT HALF PRECISION (A-H, O-Z)

PARAMETER (R = 2.8704 E + 2)
R will be typed as 32-bit according to the IMPLICITstatement and will represent a 32-bit constant. If allnumeric values are handled in this manner then a code can beconverted to 32-bit on the CYBER simply by including theIMPLICIT statement using an 'include' facility. This willresult in a completely ANSI-standard code.

II.6 CONTROLLED STORE WITH PRESET BIT VECTORS

One common operation in the NMC codes is a controlled store
with a bit vector that does not changes. The bit vector is
often setup at the beginning of the execution and is not
reset. Since a bit vector is not ANSI standard we will need
to create the mask with a real or integer array and allow
the compiler to generate the controlled store. The overhead
will be the repeated creation of a bit vector (
transparently to the programmer). This overhead should be
small, however, since many vector operations are usually
done prior to the controlled store. For example, if 50
arithmetic operations are done prior to the controlled store
the overhead would be 2%. An integer or real array for the
mask will require more storage than a bit vector, however,
the total increase for the program will be generally small.
VAST-2 will be required to vectorize the following code
sample.

C
C CREATE INTEGER ARRAY FOR MASK (CONTROLLED STORE)
C

DIMENSION IMASK (LEN)
C
C CREATE MASK PATTERN
C MASK = 1 FOR STORE, = 0 FOR NO STORE
C
C CALCULATION OF B
C

DO 1 I = 1, LEN
C
C code to compute B
C

1 CONTINUE
C
C STORE B IN A UNDER CONTROL OF MASK
C

DO 1 I = 1, LEN
IF (MASK(I) .EQ. 1) THEN

A(I) = B(I)
END IF

1 CONTINUE

II.7 FORTRAN INTRINSIC FUNCTIONS

When using FORTRAN supplied intrinsic functions and 32-bitarithmetic you should code using the generic names asopposed to the specific 32-bit names. The FORTRAN compilerwill choose the correct function based on the typing of thearguments. Recall that the 32-bit specific intrinsicfunctions are prefaced with an 'H' and therefore are non-ANSI standard while the generic names are ANSI-standard.

II.8 LINKED TRIADS

Linked triads are a combination of two vectors and a scalaror two scalars and a vector joined by multiplication,
addition, or subtraction. This instruction executes at thesame rate as a vector multiply (after a slightly longerstartup) but produces twice the work. Needless to say youshould strive for linked triads in your code. You can helpthe compiler generate linked triads by factoring yourequations into combinations of vectors and scalars as
indicated below.

DO 1 I = 1, LEN
A (I) R * (B (I) -B (I + NX)) +

(CP + R * C (I))
1 CONTINUE

The hand vectorized equivalent in triadic and diadic form
follows.

TEMP1(1; LEN) = R * (B (1; LEN) - B (NX+1; LEN))
A (1; LEN) = CP + R * C (1; LEN)A (1; LEN) = A (1; LEN) + TEMP1 (1; LEN)

Both code segements will results in two linked triads andone vector add. The intermediate results from the DO LOOPsegment will be stored in dynamic space. There is no needfor hand vectorized triadic and diadic code. The compiler isvery good at identifying linkedLtriads and will generallyminimize the amount of temporary storage in dynamic space.

.On the ETA0l architecture there may be a disadvantage tocoding in diads and triads. The architecture will shortstopintermediate vector calculations and produce fasterexecution. It may not identify the opportunities for shortstopping if the code is in triadic and diadic form.

II.9 REDUCTION FUNCTIONS (from ETA VAST-2 Manual)
A reduction function is an operation that condenses arrayoperands into one scalar value. VAST-2 will vectorize thefollowing operations (presented with the Q8 equivalent):

OPERATION Q8 EQUIVALENT

S = S + A (I) Q8SSUMS = S * A (I) Q8SPROD
S = AMAX1(S,A(I)) Q8SMAXS = AMIN1(S,A(I))

Q8SMINS = S + A(I) * B(I) Q8SDOTindex of maximum element Q8SMAXIindex of minimum element Q8SMINIIF (L(I)) N = N + 1 Q8SCNT

III. SUMMARY

Techniques for writing vectorizable ANSI FORTRAN versions ofthe most common hand vectorized code segments iiin NMCprograms have been presented. Once a code has-been properlydesigned for vectorization (appropriate data''structures andalgorithms) it can be implemented primarily in.ANSI FORTRANif the VAST-2 preprocessor is applied and the appropriateCDC FORTRAN compiler options areused. ANSI FORTRAN is morereadable, portable and maintainable than hand vectorizedcode. Some operations may need hand vectorization. Thesecode segments.will generally be small and should be confinedto easily identified routines. - .
The reader is encouraged to read the ETA VAST-2 manual priorto using it. There are many more examples of code segmentsthan presented here as well as detailed instructions forusing the various options of VAST-2.

